Susceptibility of Pseudomonas aeruginosa Biofilm to Alpha-Helical Peptides: D-enantiomer of LL-37
نویسندگان
چکیده
Pseudomonas aeruginosa is a highly versatile opportunistic pathogen and its ability to produce biofilms is a direct impediment to the healing of wounds and recovery from infection. Interest in anti-microbial peptides (AMPs) has grown due to their potential therapeutic applications and their possible use against antibiotic resistant bacteria. LL-37 is the only cathelicidin expressed by humans. In this study, we tested LL-37 and the effect of a protease-resistant LL-37 peptide mimetic, the peptide enantiomer D-LL-37, for anti-microbial and anti-biofilm activity against P. aeruginosa. Both forms of the peptide were equally effective as AMPs with similar killing kinetics. Circular dichroism spectra were obtained to demonstrate the chirality of D- and L-LL-37, and the trypsin resistance of D-LL-37 was confirmed. The helical cathelicidin from the cobra Naja atra (NA-CATH), and synthetic peptide variations (ATRA-1, ATRA-2, NA-CATH:ATRA1-ATRA1) were also tested. Although the cobra cathelicidin and related peptides had strong anti-microbial activity, those tested did not inhibit Pseudomonas biofilm formation, neither did control peptides. Both D- and L-LL-37 inhibited the attachment of Pseudomonas to a 96-well plate and decreased the amount of pre-formed (established) biofilm. D-LL-37 is able to promote Pseudomonas motility and decrease biofilm formation by altering the rate of twitching as well as by downregulating the expression of the biofilm-related genes, rhlA and rhlB, similar to L-LL-37. Both L- and D-LL-37 protected Galleria mellonella in vivo against Pseudomonas infection, while NA-CATH:ATRA1-ATRA1 peptide did not. This study demonstrates the ability and equivalence of D-LL-37 compared to L-LL-37 to promote bacterial twitching motility and inhibit biofilm formation, and protect against in vivo infection, and suggests that this peptide could be a critical advancement in the development of new treatments for P. aeruginosa infection.
منابع مشابه
Snake Cathelicidin NA-CATH and Smaller Helical Antimicrobial Peptides Are Effective against Burkholderia thailandensis
Burkholderia thailandensis is a Gram-negative soil bacterium used as a model organism for B. pseudomallei, the causative agent of melioidosis and an organism classified category B priority pathogen and a Tier 1 select agent for its potential use as a biological weapon. Burkholderia species are reportedly "highly resistant" to antimicrobial agents, including cyclic peptide antibiotics, due to mu...
متن کاملIndividual and Combined Effects of Engineered Peptides and Antibiotics on Pseudomonas aeruginosa Biofilms
Pseudomonas aeruginosa is involved in a variety of difficult-to-treat infections frequently due to biofilm formation. To identify useful antibiofilm strategies, this article evaluated efficacy of two newly engineered cationic antimicrobial peptides (17BIPHE2 and DASamP2), traditional antibiotics, and their combinations against biofilms at different stages. 17BIPHE2 is designed based on the 3D s...
متن کاملInhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide.
Biofilms cause up to 80% of infections and are difficult to treat due to their substantial multidrug resistance compared to their planktonic counterparts. Based on the observation that human peptide LL-37 is able to block biofilm formation at concentrations below its MIC, we screened for small peptides with antibiofilm activity and identified novel synthetic cationic peptide 1037 of only 9 amin...
متن کاملTransformation of Human Cathelicidin LL-37 into Selective, Stable, and Potent Antimicrobial Compounds
This Letter reports a family of novel antimicrobial compounds obtained by combining peptide library screening with structure-based design. Library screening led to the identification of a human LL-37 peptide resistant to chymotrypsin. This d-amino-acid-containing peptide template was active against Escherichia coli but not methicillin-resistant Staphylococcus aureus (MRSA). It possesses a uniqu...
متن کاملInhibition of Pseudomonas aeruginosa biofilm formation by 2,2’-bipyridyl, lipoic, kojic and picolinic acids
Objective(s):The inhibitory effects of iron chelators, and FeCl3 chelation on biofilm formation and swarming motility were investigated against an opportunistic human pathogen Pseudomonas aeruginosa. Materials and Methods:The inhibitory activity of 2,2’-bipyridyl, lipoic acid, kojic acid and picolinic acidonbiofilm formation of P. aeruginosa strain PAO1 and three clinical isolates (P. aeruginos...
متن کامل